您的位置:首页 > 数学资讯 > 趣味数学 > 正文
数学到底有多难?
编辑:admin 时间:2020/4/22 15:02:07 来源:中学数学网

  数学本身的难度

  现在是个“信息爆炸”的时代,数学也不例外,数学新概念、新方法、新知识快速增长:

  20世纪90年代初美国《数学评论》和德国的《数学文摘》编辑部联合制订的数学主题大约有100大类,每一大类之下,又分20至50个不等的子类,全部子类的总数约5100个;而所有的子类是可以相互交叉、渗透的。

  数学知识、方法绝不仅仅是量的剧增,其深刻和抽象的程度也在增加,已经是常人无法想象的啦!不信看几个例子:

  爱因斯坦认为:数学中的众多分支中,任何一个分支都很容易消耗掉他全部的精力。而爱因斯坦的智商和才华,岂是平常人能比肩的!

  民间科学家或数学家为什么热衷于哥德巴赫猜想?因为只需要简单的数论知识,就可以读懂哥德巴赫猜想的含义。然而哥德巴赫猜想终究是世界级难题,萌萌的憨态只是它的外表!

  鼎鼎大名的费马大定理,是怀尔斯通过椭圆曲线、群论、模形式等理论方法联系到谷山-志村猜想,到最终解决让人生畏的世界难题。这种综合多分支领域才有所突破已经越来越成为现代数学的一个特点,参考历届菲尔兹奖得主的获奖领域也不难发现这一点。跨越358年的“恶作剧”:费马大定理

  佩雷尔曼因为证明了庞家莱猜想和拒绝菲尔兹奖,真可谓是名声大噪啊。然而佩雷尔曼的论文是通过3个核心团队,历经3年审核后,被翻译成数百页,最终才确定庞加莱猜想确实是被解决了。拒绝“菲尔兹奖”的唯一数学家,数学界的一股清流!

  泛函分析、抽象代数和拓扑学这三个学科,是在原来抽象概念的基础上再次抽象出新溉念并加以研究,是抽象之上再加上抽象的结果。每个学科都有各自独立的研究领域,同时又互相渗透、交叉。不仅如此,催生了许多边缘学科,例如:抽象代数与拓扑结合产生拓扑群,泛分析与抽象代数结合产生算子环,拓扑与泛函相结合产生线性拓扑空间等。此外,非线性分析用代数拓扑作基础,李群与李代又以泛函为工具,拓扑中发展出同调代数,代数几何又促进微分几何的发展。因此,只有能攻下这三个“制高点”,才有机会一窥现代数学的全貌。

  如此“保质”、“保量”的现代数学,要想通过自学,需要强大的意志力和极高的天赋,相信很多人在接触极限时都有力不从心的感觉,就算是天才的陶哲轩也有接触新知识时的吃力。因为我大学所学专业是地理,而对数学又情有独钟,所以本科阶段的数学,我也是通过自学完成的。不得不说,缺少了老师的指导,确实会花费更多的时间和精力去理解新的概念和方法,会走不少的弯路。然而对于泛函分析、拓扑学这种学科,不仅老师很难讲生动,学生听课时也是一头雾水,很难跟上。


  • 上一篇: 哥德巴赫猜想为何感觉没什么用处
  • 下一篇: 没有下一篇文章
  • 发表评论
    * 评论内容:
    * 用户名:匿名发表 *不选请在前面输入您的昵称
    * 验证码: 验证码,看不清楚?请点击刷新验证码 *请输入4位数的验证码
     
    发表评论须知:
    一、所发文章必须遵守《互联网电子公告服务管理规定》;
    二、严禁发布供求代理信息、公司介绍、产品信息等广告宣传信息;
    三、严禁恶意重复发帖;
    四、严禁对个人、实体、民族、国家等进行漫骂、污蔑、诽谤。
    名师视频辅导
    热门资讯
  • 本周
  • 本月
  • 全部